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Abstract

Effectively modeling and quantifying behavior is essential for our understanding of the brain. Modeling
behavior in naturalistic settings in social and multi-subject tasks remains a significant challenge. Modeling
the behavior of different subjects performing the same task requires partitioning the behavioral data into
features that are common across subjects, and others that are distinct to each subject. Modeling social
interactions between multiple individuals in a freely-moving setting requires disentangling effects due
to the individual as compared to social investigations. To achieve flexible disentanglement of behavior
into interpretable latent variables with individual and across-subject or social components, we build on
a semi-supervised approach to partition the behavioral subspace, and propose a novel regularization
based on the Cauchy-Schwarz divergence to the model. Our model, known as the constrained subspace
variational autoencoder (CS-VAE), successfully models distinct features of the behavioral videos across
subjects, as well as continuously varying differences in social behavior. Our approach vastly facilitates the
analysis of the resulting latent variables in downstream tasks such as uncovering disentangled behavioral
motifs, the efficient decoding of a novel subject’s behavior, and provides an understanding of how similarly
different animals perform innate behaviors.

1 Introduction1

Effective study of the relationship between neural signals and ensuing behavior relies on our ability to measure2

and adequately quantify behavior. Historically, behavior has been quantified by a very small number of3

markers as the subject performs the task, for example, force sensors on levers. However, advancement in4

hardware and storage capabilities, as well as computational methods applied to video data, has allowed us5

to increase the quality and capability of behavioral recordings to videos of the entire subject that can be6

processed and analyzed quickly. It is now widely recognized that understanding the relationship between7

complex neural activity and high-dimensional behavior is a major step in understanding the brain that has8

been undervalued in the past [1, 2]. However, the analysis of high-dimensional behavioral video data across9

subjects is still a nascent field, due to the lack of adequate tools to efficiently disentangle behavioral features10

related to different subjects. Moreover, as recording modalities become light-weight and portable, neural11

and behavioral recordings can be performed in more naturalistic settings, which are difficult for behavioral12

analysis tools to disentangle due to changing scenes.13

Although pose estimation tools that track various body parts in a behavioral video are very popular, they14

fail to capture smaller movements and rely on the labeler to judge which parts of the scene are important15

to track [3, 4, 5, 6, 7]. Unsupervised techniques have gained traction to circumvent these problems. These16
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include directly applying dimensionality reduction methods such as Principal Component Analysis (PCA) and17

Variational Autoencoders (VAEs) to video data [2, 8, 9]. However, understanding or segmentation of the latent18

variables is difficult for any downstream tasks such as motif generation. To combine the best of both worlds,19

semi-supervised VAEs have been used for the joint estimation of tracked body parts and unsupervised latents20

that can effectively describe the entire image [2]. These have not been applied to across-subject data, with the21

exception of [10], where the authors directly use a frame of each subject’s video as a context frame to define22

individual differences; however, this method only works with a discrete set of labeled sessions or subjects. These23

methods fail when applied without labeled subject data, or more importantly, when analyzing freely-behaving24

social behavior, due to continuously shifting image distributions that confound the latent space.25

With increasing capabilities to effectively record more naturalistic data in neuroscience, there is a growing26

demand for behavioral analysis methods that are tailored to these settings. In this work, we model a27

continuously varying distribution of images, such as in freely moving and multi-subject behavior, by using a28

novel loss term called the Cauchy-Schwarz Divergence (CSD) [11, 12]. By applying the CSD loss term, a29

subset of the latents can be automatically projected on a pre-defined and flexible distribution, thus leading30

to an unbiased approach towards latent separation. Here, the CSD is an effective variational regularizer31

that separates the latents corresponding to images with different appearances, thus successfully capturing32

‘background’ information of an individual. This background information can be the difference in lighting33

during the experiment, the difference in appearance across mice in a multi-subject dataset, or the presence of34

another subject in the same field of view as in a social interaction dataset.35

To further demonstrate the utility of our approach, we show that we can recover behavioral motifs from36

the resulting latents in a seamless manner. We recover (a) the same motifs across different animals performing37

the same task, and (b) motifs pertaining to social interactions in a freely moving task with two animals.38

Furthermore, we show the neural decoding of multiple animals in a unified model, with benefits towards the39

efficient decoding of the behavior of a novel subject. Finally, we compare the commonalities in neural activity40

across different trials in the same subject to those across subjects for different types of behavior motifs, e.g.41

task-related and spontaneous.42

Related Works Pose estimation tools such as DeepLabCut (DLC) and LEAP have been broadly applied43

to neuroscience experiments to track the body parts of animals performing different tasks, including in the44

social setting [3, 4, 5, 6, 7]. These are typically supervised techniques that require extensive manual labeling.45

Although these methods can be sample-efficient due to the use of transfer learning methods, they still depend46

inherently on the quality of the manual labels, which can differ across labelers. Moreover, these methods may47

be missing key information in these behavioral videos that are not captured by tracking the body parts, for48

example, movements of the face, the whiskers, and smaller muscles that comprise a subject’s movements.49

Emerging unsupervised methods have demonstrated significant potential in directly modeling behavioral50

videos. A pioneer in this endeavor was MoSeq, a behavioral video analysis tool that encodes high dimensional51

behavior by directly applying PCA to the data [13, 9]. Behavenet is similar to MoSeq, but uses autoencoders52

to more effectively reduce the dimensionality of the representation [8]. However, the corresponding latent53

variables in these models are typically not interpretable. To add interpretability, the Partitioned Subspace54

VAE (PS-VAE) [2] formulates a semi-supervised approach that uses the labels generated using pose estimation55

methods such as DLC in order to partition the latent representation into both supervised and unsupervised56

subspaces. The ‘supervised’ latent subspace captures the parts that are labeled by pose estimation software,57

while the ‘unsupervised’ latent subspace encodes the parts of the image that have not been accounted for58

by the supervised space. While PS-VAE is very effective for a single subject, it does not address latent59

disentaglement in the ‘unsupervised’ latent space, and is not able to model multi-subject or social behavioral60

data.61

Modeling multiple sessions has recently been examined in two approaches: MSPS-VAE and DBE [2, 10].62

Both of these are confined to modeling head-fixed animals with a pre-specified number of sessions or subjects.63

In MSPS-VAE, an extension to PS-VAE, a latent subspace is introduced in the model that encodes the static64

differences across sessions. In DBE, a context frame from each session or subject is used as a static input65

to generate the behavioral embeddings. Two notable requirements of applying both these methods is the66

presence of a discrete number of labeled sessions or subjects in the dataset. Therefore, these are not well67

suited for naturalistic settings where the session / subject identity might not be known a priori, or the scene68

might be continuously varying, for example, in the case of subjects roaming in an open-field.69
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Figure 1: Overview of the Constrained Subspace Variational Autoencoder (CS-VAE). The latent space is
divided in three parts: (1) the supervised latents decode the labeled body positions, (2) the unsupervised
latents model the individual’s behavior that is not explained by the supervised latents, and (3) the constrained
subspace latents model the continuously varying features of the image, e.g., relating to multi-subject or social
behavior. After training the network, the generated latents can be applied to several downstream tasks.
Here we show two example tasks: (1) Motif generation: we apply state space models such as hidden Markov
models (HMM) and switched linear dynamical systems (SLDS), with the behavioral latent variables as the
observations; (2) Neural decoding: with neural recordings such as widefield calcium imaging, corresponding
behaviors can be efficiently predicted for novel subjects.

2 Results70

2.1 CS-VAE Model Structure71

Although existing pose estimation methods are capable enough to capture the body position of the animals72

in both open and contained space, tracking specific actions such as shaking and wriggling still remains a73

problem. However, a purely unsupervised or semi-supervised model such as a VAE or PS-VAE lacks the74

ability to extract meaningful and interoperable behaviors from multi-subject or social behavioral videos.75

One possible solution is to add another set of latent which could capture the variance across individuals76

and during social interactions. Instead of constraining the data points from different sessions or subjects77

to distinct parts of the subspace as in [2, 10], we directly constrain the latent subspace to a flexible prior78

distribution using a Cauchy-Schwarz regularizer as detailed in the Methods section. Ideally, this constrained79

subspace (CS) captures the difference between different animals in the case of a multi-subject task and the80

social interactions in a freely-behaving setting, while the supervised and unsupervised latents are free to81

capture the variables corresponding to the individual. The model structure described above is shown in Fig.82

1. After the input frames go through a series of convolutional layers, the resulting latent splits into three83

sets. The first set contains the supervised latents, which encodes the specific body position as tracked by84
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Figure 2: (A) Simulated dataset: behavioral videos from one mouse with artificially simulated differences in
contrast. (B) Distribution occupied by the 3 CS latents.The constrained latents are distributed according to
the pre-defined prior: a Swiss roll distribution. Different contrast ratios separate well in space. (C) Left:
R2 values for label reconstruction; Right: visualization of label reconstruction for an example trial. Latent
traversals for (D) CS latents, each of which captures lower, medium, and higher contrast rate. (E) An example
supervised latent captures lever movement, and (F) an example unsupervised latent which captures jaw
movement.

supervised tracking methods such as DLC. The unsupervised latents capture the rest of the individual’s85

behavior that are not captured by supervised latents. The CS latents capture the continuous difference across86

frames. The prior distribution can be changed to fit different experimental settings (and can be modeled87

as a discretized state space if so desired, making it close to the MSPS-VAE discussed in the Introduction).88

2.2 Modeling Smooth Variations in a Simulated Dataset89

We performed a simulation study on the behavioral videos of one of the mice in the ‘Multi-Subject Behavior’90

dataset detailed in Appendix .1. We applied a continuously varying contrast ratio throughout the trials (Fig.91

2A) to model smoothly varying lighting differences across the dataset. We then randomly shuffled all the92

trials and trained a CS-VAE model with a swiss roll as a prior distribution. Here, the R2 for the supervised93

labels was 0.881± 0.05 (Fig. 2C), and the mean squared error (MSE) for reconstructing the entire frame was94

0.0067± 0.0003, showing that both the images and the labels were fit well.95

We show the CS latents recovered by the model in Fig. 2B, which follow the contrast ration distribution.96

We also show latent traversals in Fig. 2D-F, which demonstrate that the CS latent successfully captured97

the contrast changes in the frames (Fig. 2D), the supervised latent successfully captured the corresponding98

labeled body part (Fig. 2E), and the unsupervised latent captured parts of the individual’s body movement99

with a strong emphasis on the jaw (Fig. 2F). Thus, we show that smoothly varying changes in the videos are100

well captured by our model.101

2.3 Modeling Multi-Subject Behavior102

In a multi-subject behavioral task, we would like to disentangle the commonalities in behavior from the103

differences across subjects. Here, we test the CS-VAE on an experimental dataset with four different mice104

performing a two-alternative forced choice task (2AFC): head-fixed mice performed a self-initiated visual105

discrimination task, while the behavior was recorded from two different views (face and body). The behavioral106

video includes the head-fixed mice as well as experimental equipment such as the levers and the spouts. We107

labeled the right paw, the spouts, and the levers using DLC [3]. Neural activity in the form of widefield108

calcium imaging across the entire mouse dorsal cortex was simultaneously recorded with the behavior. The109

recording and preprocessing details are in [14, 15], and the preprocessing steps for the neural data are detailed110

in [15].111
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Figure 3: Modeling the behavior of four different mice. A. Image reconstruction result for an example frame
from each mouse. B. Label reconstruction result for an example trial. C. R2 value for label reconstruction for
all mice. D. (Left) CS latent and (Right) unsupervised latent distributions for all mice generated using our
CS-VAE model. On the left, we see that the CS latent distribution follows the pre-defined prior distribution
and is well separated; on the right, we see that the unsupervised latent distribution is well overlapped across
mice. E. Unsupervised latent distribution for all mice generated using the comparison PS-VAE model, where
the latents from different mice are separate from each other. F. SVM classification accuracy for classifying
different mice using the CS-VAE and PS-VAE latents. The unsupervised latents generated by the CS-VAE has
low classification accuracy, indicating across-subject representations, and the CS latents have a classification
accuracy close to one, indicating good separation.

Reconstruction Accuracy The CS-VAE model results in a mean label reconstruction accuracy R2 =112

0.926± 0.02 (Fig. 3B,C), with the MSE for frame reconstruction as 0.00232± 7.7 · 10−5 (Fig. 3A). This was113

comparable to the results obtained using a PS-VAE model (R2 = 0.99± 0.004, MSE = 0.13± 4.5 · 10−7).114

Disentangled Latent Space Representation We show latent traversals for each mouse in Fig. 4, with115

the base image chosen separately for each mouse (videos in Supplementary Material 3). We see that, even116

for different mice, the supervised latent can successfully capture the corresponding labeled body part (Fig.117

4A). The example unsupervised latent is shown to capture parts of the jaw of each mouse (Fig. 4B), and118

is well-localized, comparable with the example supervised latent. The CS latent dimension encodes many119

different parts of the image, and has a large effect on the appearance of the mouse, effectively changing the120

appearance from one mouse to another, signifying that it is useful in the case of modeling mouse-specific121

differences (Fig. 4C). We demonstrate the abilities of the CS latent in capturing the appearance of the122

mouse by directly changing the CS latent from one part of subspace to another (Figure 4D). The changes in123

appearance along with the invariance in actions shows the intraoperability between mice by only changing124

the CS latents in this model (Fig. 4D).125

Ideally, we would like to uncover common across-subject variables using the supervised and unsupervised126

latents subspaces, and have the individual differences across subjects be encoded in the CS latents. Thus,127

we expect the unsupervised latents to not be able to classify the individual well. In fact, Fig. 3D,F show128

that the unsupervised latents overlap well across the four mice and perform close to chance level (0.25) in129

a subject-classification task using SVM (details in Appendix ??). This signifies that unsupervised latents130

occupy the same values across all four mice and thus effectively capture across-subject behavior. In fact, we131

tested our latent space by choosing the same base image across the four mice, and found that the supervised132

and unsupervised latents from different mice can be used interchangeably to change the actions in the videos,133

also showing interoperability between different mice in these latent subspaces (Appendix .9).134
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Figure 4: Latent traversals for behavioral modeling of four different mice for A. an example supervised latent
that captures the left spout across all the subjects, B. an example unsupervised latent that captures the chest
of the mice, and C. an example CS latent that successfully captures the mouse appearance. D. Changing the
value of the CS latent in an example frame leads to a change in subject, while keeping the same action as in
the example frame.

This is in stark contrast to the CS latents, which are well separated across mice and are able to be135

classified well (Fig. 3D,F); thus, they effectively encode for individual differences across subjects. Note that136

our method did not a prior know the identity of the subjects, and thus this shows that the CS latents achieve137

separation in an unsupervised manner. We also note that the CS latents are distributed in the shape of the138

chosen prior distribution (a circle). The separation in the unsupervised latent space obtained by the baseline139

PS-VAE shown in Fig. 3E and the latents’ ability to classify different subjects (Fig. 3F) further validates the140

utility of CS-VAE.141

Lastly, we trained the model while using prior distributions of different types, to understand the effect on142

the separability of the resulting latents. The separability was comparable across a number of different prior143

distributions, such as a swiss roll and a plane, signifying that the exact type of prior distribution does not144

play a large role.145

Across-Subject Motif Generation To further show that the supervised and unsupervised latents146

produced by CS-VAE are interoperable between the different mice, we apply a standard SLDS model147

(Appendix .6) to uncover the motifs using this across-subject subspace. As seen in the ethograms (left)148

and the histograms (right) in Fig. 5, the SLDS using the CS-VAE latents captures common states across149

different subjects, indicating that the latents are well overlapped across mice. The supervised latents related150

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2022.09.01.506091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506091
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Motif generation for across-subject (supervised and unsupervised) behavioral latents using CS-VAE.
SLDS results for CS-VAE latents: A. Supervised latents relating to equipment in the field of view. The
equipment actions are similar for each trial. B. Supervised latents relating to tracked body parts. The
ethograms for each trial across subjects and between subjects are very similar. The histogram indicates
the number of frames occupied by each action per mouse. This further confirms the similarities between
the supervised latents across subjects. C. Unsupervised latents also look similar across mice. Here, some
example consecutive frames from the ’raise pow’ motif are shown, which show the mouse grooming. D. As a
comparison, SLDS results for the latents generated by a VAE, which failed to produce across-subject motifs.

to equipment in the experiment, here the spout and lever, split the videos into four states (different colors in151

the ethograms in Fig. 5A), that we could independently match with ground truth obtained from sensors in152

these equipment. The histograms show that, as expected, these states occur with a very similar frequency153

across mice. We also explored the behavioral states related to the right paw. The resulting three states154

captured the idle vs. slightly moving vs. dramatically moving paw (Fig. 5B). The histograms show that155

these states also occur with a very similar frequency across mice. Videos for all these states are available in156

Supplementary Material 2. The inference drawn from supervised latents is directly proportional to the DLC157

labels. Hence, a similar conclusion can be arrived at by utilizing the DLC pose estimations. Nonetheless,158

the subsequent outcomes cannot be attained solely based on the poses. We extracted the behavioral states159

related to the unsupervised latents, which yielded 3 states related to raising of the paws (including grooming)160

and jaw movements (including licking) that are present in all four mice, as shown in Fig. 5C. We see that161

different mice have different tendencies to lick and groom, e.g., mouse 1 and 4 seem to groom more often.162

As a baseline, we repeat this exercise on the latents of a single VAE trained to reconstruct the videos of163

all four mice (Fig. 5D). We see that the latents obtained by the VAE do not capture actions across subjects,164

and fail to cluster the same actions from different subjects into the same group.165

Efficient Neural Decoding via Transfer Learning To understand the relationship between neural166

activity and behavior, we decoded each behavioral latent with neural data across the dorsal cortex recorded167

using widefield calcium imaging. The decoding results for the supervised latents were similar across the168

CS-VAE and the PS-VAE, but we show that the neural data was also able to capture the CS-VAE unsupervised169

latents well (Appendix .10).170

Next, as a final test of interoperability of the individual latents across mice, we used a transfer learning171
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Figure 6: A. Transfer learning model framework. Each of the four mice has a specific dense layer for aligning
the neural activities. After the model is trained using three mice, the across-subject Recurrent Neural Network
(RNN) layer is fixed and transferred to the fourth mouse. As a comparison, we trained a novel RNN model
for the fourth mouse and compared the accuracy with the transfer learning model B. R2 and training time
trade-off for individual vs. transfer learning model as the size of the training set decreases. As the training
set decreases, the transfer learning has a better performance than the individually trained model with regards
to both time and R2 accuracy.

approach. We first trained an LSTM decoding model on 3 of the 4 mice, and then tested that model on the172

4th mouse while holding the LSTM weights constant but training a new dense layer leading to the LSTM (Fig.173

6A, details in Appendix .10). As a baseline, we compared the performance of an individual LSTM model174

trained only on the 4th mouse’s data. We see in Fig. 6B that, as the training set of the 4th mouse becomes175

smaller, the transfer learning model outperforms the baseline with regards to both time and accuracy (more176

results and baseline comparisons in Appendix .10).177

Neural Correlations across Mice during Spontaneous and Task-Related Behaviors Here178

we explore the neural activity correlations while the subjects perform similar spontaneous behaviors vs.179

task-related behaviors. Across mice, we automatically identify spontaneous behaviors such as grooming and180

task-related behaviors such as lever pulls. We first separate the behavior from the same motif into small181

segments and kept the segments that have similar means and standard deviations within and across animals182

as shown in Fig. 7B. Next, we explore the commonalities between the neural activity of different mice as they183

perform these tasks by transforming the neural activity into a common subspace, using Multidimensional184

Canonical Correlation Analysis (MCCA). Here, we adopt the assumptions in Safaie et al. [?] that when the185

animals perform the same actions, the neural latent will share similar dynamics. We employ MCCA to align186

the high-dimensional neural activity across multiple subjects[?]. To do this, MCCA projects the datasets187

onto a canonical coordinate space that maximizes correlations between them (Fig. 7 C. method details in188

Appendix .11). Finally, we compare the commonalities across different trials in the same subject to those189

across subjects for different types of behaviors. In Fig. 7D, we see that for the idle behavior, the neural190

correlation across mice is much lower than the correlation within the same mouse; however, this does not hold191

for the task-related behaviors such as lever pull and licking, or the spontaneous behaviors such as grooming.192

For the grooming behavior, the neural correlations within and across subjects are much higher than for the193

idle behaviors, and in fact, even higher than the task-related behaviors. This may be due to innate behaviors194

having common neural information pathways across mice, whereas learnt behaviors may display significant195

differences across mice. Considering the region-based differences in commonalities, the sensory areas such196
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Figure 7: A.The overall workflow for comparing the neural activities for different subjects performing similar
spontaneous behaviors: First, the behavioral videos are encoded into behavior latents by CS-VAE. Then, the
behavior latents would be clustered into different motifs. After that, similar behaviors are grouped based
on their mean and standard deviation values. We can therefore obtain the corresponding neural activities.
Finally, the neural activities from different subjects are aligned using the MCCA. B. Behavior latents are cut
into small fragments. Similar behavior fragments are grouped together based on their mean and standard
deviation values. The corresponding neural activities are obtained based on the grouping results of the
behavior. C. Neural activities are being aligned using MCCA. MCCA aligns the neural activities from
different subjects by mapping them into the same feature spaces. D. Correlation score for behavioral-based
aligned neural activity. The grooming behavior has higher neural correlation scores for cross-subjects than
other behaviors.

as the visual and the somatosensory areas are much more highly correlated across mice for all behaviors as197

compared to motor behaviors. This may be due to the similarities in sensory feedback due to these similar198

behaviors but is a topic of future exploration.199

2.4 Modeling Freely-Moving Social Behavior200

The dataset consists of a 16 minute video of two adult novel C57BL/6J mice, a female and a male, interacting201

in a clean cage. Prior to the recording session the mice were briefly socially isolated for 15 minutes to increase202

interaction time. As preprocessing, we aligned the frame to one mouse and cropped the video (schematic203

in Fig. 8A; details in the Appendix .2). We tracked the nose position (x and y coordinates) of the mouse204

using DLC. Here, we did not include an unsupervised latent space, since the alignment and supervised labels205

resulted in the entire individual being explained well using the supervised latents.206

Reconstruction Accuracy The CS-VAE model results in a mean label reconstruction accuracy 0.961±207

0.0017 (Fig. 8B), with the MSE for frame reconstruction as 1.21 · 10−5 (Fig. 8B). We compared the208

performance of our model with the VAE and PS-VAE (Table 4), and the CS-VAE model performed better209

than the baseline models for both image and label reconstruction. For the VAE, we obtained the R2 for nose210

position prediction by training a multi-layer perceptron (MLP) with a single hidden layer from the VAE211
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Table 1: Comparison of different models on the freely-moving social behavior dataset

VAE PS-VAE CS-VAE

MSE for image reconstruction 1.74 · 10−5 5.44 · 10−5 1.21 · 10−5

R2 for nose position 0.135± 0.013 0.894± 0.002 0.958± 0.002
R2 for inter-individual nose-to-tail distance 0.353± 0.0099 0.283± 0.013 0.363± 0.0098

Figure 8: A. Image alignment for the social behavior data. B. Model performance on the social behavior
dataset. C. Visualization of the CS latents overlaid with the nose-to-tail distance between the two interacting
mice. The CS latents separates the frames that contain social interactions from those that do not.

latents to the nose position.212

Disentangled Latent Space Representation We calculated the latent traversals for each latent as in213

Appendix .9. As shown in the videos in Supplementary Material 4, CS latent 1 captures the second mouse to214

the front of the tracked mouse, CS latent 2 captures the front and above position of the second mouse, and215

CS latent 3 captures the position where the second mouse is below the tracked mouse.216

To visualize the latent space and understand the relationship to social interactions, we plot the CS latents217

overlaid with the nose-to-tail distance between the two mice (nose of one mouse to the tail of the other) in Fig.218

8C. We see that the CS latents represent the degree of social interaction very well, with a large separation219

between different social distances. Furthermore, we trained an MLP with a single hidden layer from different220

models’ latents to the nose-to-tail distance, and the CS-VAE produces the highest accuracy (Table 4).221

Motif Generation We applied a hidden Markov model (HMM) to the CS latents to uncover behavioral222

motifs. The three clusters cleanly divide the behaviors into social investigation vs. non-social behavior vs.223

non-social behavior with the aligned mice exploring the environment. To effectively visualize the changes224

in states, we show the ethogram in Fig. 9A. Videos related to these behavioral motifs are provided in225

Supplementary Material 5.226

Lastly, we calculated different metrics to quantitatively evaluate the difference between each behavioral227

motif. The results are shown in Fig 9B, where we plot the average values for distances and angles between228

different key points. The lower distance between the two mice in State a demonstrates that the mice are229

close to each other in that state, pointing to social interactions. The smaller nose-to-tail distance for the230

aligned mouse in State c points to this state encoding for the ‘rearing’ of the mouse. The angle between the231

two mice further reveals the relative position between the two mice; in State b, the second mouse is located232

above the aligned mouse, while the opposite is true for State c. These metrics uncover the explicit differences233

between the different motifs that are discovered by CS-VAE.234

3 Discussion235

In the field of behavior modeling, there exist three major groups of methods, supervised, unsupervised, and236

semi-supervised. The supervised methods consist of methods such as DeepLabCut (DLC) [7], LEAP [6],237
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Figure 9: A. Ethogram for the animals’ behavior recovered using hidden Markov models (HMM) applied
to the CS latents. B. Different metrics for analysing the behavioral motifs. Here, the three motifs are a.
social interaction; b. non-social interaction with the companion on the upper side of the aligned mouse; c.
non-social interaction (the aligned mouse exploring the environment with its companion far away). These
metrics show the quantitative differences between the different motifs.

AlphaTracker [5], amongst others. Although these methods capture the positions of the subjects, they lack the238

ability to model smaller movements and unlabeled behavior, and necessitate tedious labeling. On the other239

hand, unsupervised methods such as MoSeq [9] and Behavenet [8] lack the ability to produce intertpretable240

behavioral latents. While some semi-supervised methods, for instance, MSPS-VAE [2] and DBE [10], succeed241

in producing interpretable latents and modeling behavior across subjects, they need significant human input,242

and lack the ability to model freely-moving animals’ behavior. Here, we introduce a constrained generative243

network called CS-VAE that effectively addresses major challenges in behavioral modeling- disentangling244

multiple subjects and representing social behaviors.245

For multi-subject behavioral modeling, the behavioral latents successfully separates the common activities246

across animals from the differences across animals. This behavioral generality is highlighted by the across-247

subject behavioral motifs generated by standard methods, and a higher accuracy while applying transfer248

learning for the neural decoding task. Furthermore, the SVM classification accuracy approaches 100%, which249

also indicates that the constrained-subspace latents well separate the differences between the subjects. In250

the social behavioral task, the constrained latents well capture the presence of social investigations, the251

environmental exploration, and the relative locations of the two individuals in the behavioral motifs. While252

our methods succeed in effectively modeling social behavior, it remains a challenge to separate out different253

kinds of social investigations in an unsupervised manner.254

The constrained latents encode smoothly and discretely varying differences in behavioral videos. As seen255

in this work, in the across-subject scenario, the constrained latents encode the appearance of the different256

subjects, while in freely-moving scenario, the constrained latents capture social investigation between the257

subjects. The flexibility of this regularization thus gives it the ability to be fit in different conditions. Future258

directions include building an end-to-end structure that can captures behavioral motifs in a unsupervised way.259
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4 Methods260

Regularization of Constrained Subspace We use the Cauchy-Schwarz divergence to regularize our261

constrained subspace using a chosen prior distribution. The Cauchy-Schwarz divergence DCS(p1, p2) between262

distributions p1(x) and p2(x) is given by:263

DCS(p1, p2) = − log

∫
p1(x)p2(x)dx√∫

p21(x)dx
∫
p22(x)dx

(1)

DCS(p1, p2) equals zero if and only if the two distributions p1(x) and p2(x) are the same. By applying the264

Parzen window estimation technique to p1(x) and p2(x), we get the entropy form of the Equation [11]:265

Ĥ(p1) = − log(V (p1)) = − log

 N∑
i

N∑
j

G√
2σ(p1i − p1j)/N

2

 (2)

Ĥ(p1, p2) = − log(V (p1, p2)) = − log(

N1∑
i

N2∑
j

G√
2σ(p1i − p2j)/(N1N2)) (3)

Here, p1i represents the ith sample from the distribution p1, i.e., p1(xi). − log(V (p1)) and − log(V (p2)) are266

the estimated quadratic entropy of p1(x) and p2(x), respectively, while − log(V (p1, p2)) is the estimated267

cross-entropy of p1(x) and p2(x). G is the kernel applied to the input distribution; here it is chosen to be268

Gaussian. N , N1, and N2 are the number of samples being input into the model while σ is the kernel size.269

The choice of the kernel size depends on the dataset itself; generally, the kernel size should be greater than270

the number of the groups in the data. Equation (1) can be expressed as:271

LCS := DCS(p1, p2) = log
V (p1)V (p2)

V 2(p1, p2)
(4)

Here, p1(x) represents the distribution of our CS latent space, and p2(x) the chosen prior distribution. In272

Equation (4), minimizing V (p1) would result in the spreading out of p1(x), while maximizing V (p1, p2) would273

make the samples in both distributions closer together [11]. Thus, we minimize this term in the objective274

function while training the model. However, it may be necessary to stop at an appropriate value, since overly275

spreading out p1(x) may lead to the separation of the samples from the same groups, while making p1 and p2276

excessively close may cause mixtures of data points across groups.277

In short, the Cauchy-Schwarz divergence measures the distance between p1 and p2. In our work, we adopt278

a variety of distributions as a prior distribution p2(x), and we aim to project the constrained subspace latents279

onto the prior distribution (see Fig. 1).280

Optimization The loss for the CS-VAE derives from that for the PS-VAE, and is given by:281

LCS−V AE = Lframes + αLlabel − LKL−s − LICMI − βLTC − LDWKL + γLCS (5)

Here, the terms Lframes and Llabel represent the reconstruction loss of the frames and the labels, respectively.282

The LKL−s represents the KL-divergence loss for the supervised latents while LICMI , LTC , and LDWKL283

form the decomposed version of the KL loss for the unsupervised latents. Lastly, the LCS represents the CS-284

divergence loss on our constrained latents. α is introduced to control the reconstruction quality of the labels, β285

is adopted to assist the model in producing independent unsupervised latents, and γ is implemented to control286

the variability in the constrained latent space for better separation. The detailed explanations and derivations287

for each term in the objective function are in Appendix .3. Furthermore, the loss terms in Equation (5) can be288

modified to fit various conditions. For a freely-behaving social task, the background for one individual in the289

container could be the edge of the container as well as the rest of the individuals in the container. The choice of290

hyperparameters and the loss curves through the training process is shown in Appendix .5 and .7, respectively.291

Visualization of the latent space To test how the image varies with a change in the latent, one frame292

from the trials is randomly chosen as the ‘base image’, and the effect of varying a specific latent at a time293

is visualized and quantified. This is known as the ‘latent traversal’ [2]. First, for each latent variable, we294
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find out the maximum value that it occupies across a set of randomly selected trials. We then change that295

specific latent to achieve its maximum value, and this new set of latents forms the input to the decoder. We296

obtain the corresponding output from the decoder as the ‘latent traversal’ image. Finally, we visualize the297

difference between the ‘latent traversal’ image and the base image. The above steps are performed for each298

latent individually. In videos containing latent traversals (Supplementary Material), we change the latent’s299

value from its minimum to its maximum across all trials, and input all the corresponding set of latents into300

the decoder to produce a video.301

Behavioral Motif Generation Clustering methods such as Hidden Markov Models (HMM) and switching302

linear dynamical systems (SLDS) have been applied in the past to split complex behavioral data into simpler303

discrete segments [16] (see Appendix .6 for details). We use these approaches to analyze motifs from our304

latent space, and directly input the latent variables into these models. In the case of multi-subject datasets,305

our goal is to capture the variance in behavior in a common way in the across-subject latents, i.e., recover306

the same behavioral motifs in subjects performing the same task. In the case of freely-moving behavior, our307

goal is to capture motifs related to social behavior.308

Efficient Neural Decoding Decoding neural activity to predict behavior is very useful in the under-309

standing of brain-behavior relationships, as well as in brain-machine interface tasks. However, models to310

predict high-dimensional behavior using large-scale neural activity can be computationally expensive, and311

require a large amount of data to fit. In a task with multiple subjects, we can utilize the similarities in312

brain-behavior relationships to efficiently train models on novel subjects using concepts in transfer learning.313

Here, we represent across-subject behavior in a unified manner and train an across-subject neural decoder.314

Armed with this across-subject decoder, we show the decoding power on a novel subject with varying amounts315

of available data, such that it can be used in a low-data regime. The implementational details for this transfer316

learning approach can be found in Appendix .10.317

Behavior election for innate behaviors studying While the behavioral features extracted from318

the previous sections are successful in capturing similar spontaneous behaviors across various animals, the319

behavioral patterns within the same motifs can exhibit substantial variation. For instance, in the case of320

the raising paw motif, continuous movement of the paws could be indicative of either grooming or other321

complex behaviors. To overcome this challenge, we divided the behaviors belonging to the same motif into322

smaller segments and calculated the corresponding mean and standard deviation of the behavioral latents.323

Subsequently, we compared these values and retained the segments that exhibited similar mean and standard324

deviations both within and across animals, as illustrated in Fig. 7B. These steps were repeated for all the325

behavioral motifs examined in this study.326

In addition to the spontaneous behaviors discussed above, we also selected an ‘idle’ behavior that captured the327

mouse’s inactivity and a task-related behavior, namely the ’lever pull’ behavior, which signaled the initiation328

of each task.329
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5 Appendix358

.1 Experimental Methods and Preprocessing for the Multi-Subject Dataset359

In our work, we employed a subset of the behavioral dataset detailed in Musall et al., 2019 [14]. Briefly, the360

task entailed pressing a lever to initiate the task, after which a visual stimulus was displayed towards the left361

or the right. After a delay period, the spouts come forward, at which time the mouse makes its decision by362

licking the spout corresponding to the direction of the visual stimulus (left or right). Finally, the mice receive363

a juice reward if they choose correctly.364

We tested the CS-VAE on the behavioral data for the four mice performing a visual task and randomly365

chose 388 trials per mouse each of the trials has a 189 number of frames. Each frame was pre-processed and366

resized to have both the length and width being 128. One example trial for each mouse can be found in367

Supplementary Material 1.368

Before inputting the data into the model, we sorted the trials by the amount of variance in the images,369

and shuffled the first half (high variance) and the second half (low variance) of the dataset separately. This370

was done to speed up training by training the model on high-variance trials first. We tested our model by371

randomly choosing 4 trials from all trials for each mouse 5 times. The same procedure was applied when372

training the model on the simulation dataset, i.e., the doctored data for one subject.373

.2 Experimental Methods and Preprocessing for the Freely-Moving Social Be-374

havior Dataset375

The dataset consists of a 16-minute video of two adult novel C57BL/6J mice, a female and a male, interacting376

in a clean cage. Prior to the recording session, the mice were briefly socially isolated for 15 minutes to increase377

interaction time. This dataset was collected by one of the authors. The original data has 24917 number of378

frames with length and width being 1920 and 1080, respectively. The example fraction of the video can be379

found in Supplementary Material 6.380

The nose, ears, and tail base of each mouse were manually annotated using AlphaTracker. We kept 19659381

number of frames that have the labels for preprocessing and training. We perform several preprocessing steps382

to align and crop the video as well as the labels based on one of the two mice (Mouse 1, female). All of the383

preprocessing steps were based on the AlphaTracker labels. For each frame, we first rotate it to ensure that384

the nose and tailbase for Mouse 1 are on the same horizontal line, with the central point for rotation as the385

left ear. Next, we aligned the frame such that the left ear of Mouse 1 was at the same location across all386

frames. Finally, we resize the frame to be 128 × 128 and consequently the AlphaTracker labels. For this387

dataset, since there was a relatively low number of frames, we obtained the CS-VAE MSE and label R2 for388

the entire dataset.389

.3 Methodological details of the Partitioned Subspace VAE390

The Partitioned Subspace VAE (PS-VAE) was introduced in [2], and we borrow the notation used in that391

paper when detailing the CS-VAE. Thus, we include here a full description of the model.392

First of all, we define the input frame as x, and the corresponding pose estimation tracking label as y.393

The reconstructed variables are termed x̂ and ŷ, respectively. The supervised latent space is denoted as zs,394

unsupervised latent as zu, and the background latent as zb. In a VAE model, we would like to minimize the395

distance, typically the KL divergence, between the posterior distribution of the latent variables p(z|x) and a396

chosen distribution q(z|x). However, since p(z|x) is an unknown distribution, the Evidence Lower Bound397

(ELBO) is introduced as an alternative method to reduce the KL divergence:398

399

L′
ELBO = Eq(z|x)[log(p(x|z)]−KL[q(z|x)||p(z)] (6)

Following [2], if we have a finite dataset {xn}Nn=1, and we treat n as a random variable with a uniform400

distribution p(n) while defining q(z|n) := q(zn|xn), we can rewrite the ELBO as:401

LELBO = Ep(n)[Eq(z|n)[log(p(x|z)]]− Ep(n)[KL[q(z|n)||p(z)]] (7)
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We define the loss over frames Lframes as the first of the two terms above. In the PS-VAE model, there are402

two inputs: frames x and labels y. Therefore, in Equation (7), instead of writing the input likelihood as403

p(x|z), we can now write it as p(x, y|z). A simplifying assumption is made that x and y are conditionally404

independent given z, and thus we can directly write Lframes+labels as Lframes + Llabels, where Llabels is405

calculated by replacing x with y in Lframes.406

After assuming the prior p(z) has a factorized form: p(z) =
∏

i p(zi), the KL term LKL can be split as the
addition of ℓKL−s and ℓKL−u, i.e., the KL terms for the supervised and unsupervised latents, respectively.
We decompose the KL term for the unsupervised latent as the following [2].

LKL−u = LICMI + LTC + LDWKL

= KL[q(zu, n)||q(zu)p(n)] +KL[q(zu)||
∏
j

(zu,j)] +KL[q(zu,j)||
∏
j

(zu,j)] (8)

where j represents the latent dimension, LICMI is the index-code mutual information, which measures how407

well the latent encodes the corresponding input data. The term TC is short for total correlation, which408

measures the interdependency of each latent dimension. The third term, LDWKL is the dimension-wise KL,409

which calculates the KL divergence for each dimension individually. Finally, the resulting subspace is forced410

to be orthogonal by applying orthogonal weights across all the different latents.411

The authors in [2] introduce an extension to PS-VAE for modeling multi-session data. The Multi-Session412

PS-VAE (MS-PS-VAE) can only work with a labeled set of discrete sessions, as described in the Introduction.413

The images from each session are labeled, and the session-specific latents are enforced to be static over414

time, thus capturing the image-related details. To enforce the background latents to be static over time in a415

particular session, and to maximize the difference in the background latents across different sessions, the416

triplet loss is introduced in MS-PS-VAE. As described in the Introduction, this loss term artificially places417

the latents from the same session together while separating the latents from different sessions. The triplet418

loss is computed as the following.419

Ltriplet = max{d(a, p)− d(a, n) +m, 0} (9)

Here, a is the anchor point, p is the positive point, n is the negative point, and m is a margin. The function420

pulls the point p towards point a, and pushes the point n away from point a. While training, the data from421

multiple sessions is included in each mini-batch. The data from each session is split in three, and each third422

from the same session acts as an anchor and positive point, while the data from another session acts as a423

negative point. Practically, this requires as many sessions as possible in the same mini-batch during the424

training for accurate results. As the number of sessions increases, this method becomes computationally425

intractable, and may lead to unsatisfactory reconstruction results. Moreover, this loss does not allow for426

varying backgrounds across any one session.427

In the MS-PS-VAE model, the triplet loss was applied as a supervised manner to pull the data from the428

same subject being closer while pushing the different subjects away from each other. This method is only429

useful when the number of sessions is known, and is not applicable in an open-field setting, for example while430

modeling freely-moving social behavior as in this manuscript.431

Therefore, in this manuscript, we introduce a regularization term that can automatically separate different432

subjects in the background latent space without specifying the number of sessions or labeling each frame as433

belonging to a specific session.434

.4 Model Architecture and Training435

Our computational experiments were carried out using TensorFlow and Keras. The image decoder we use436

is symmetric to the encoder, with both of them containing 14 convolution layers. We applied the Adam437

optimizer with learning rate as 10−4. For the multi-subject dataset, we fixed our batch size to be 256 and438

trained for 50 epochs. For the freely-moving social behavior dataset, we trained for 500 epochs with batch439

size 128.440
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.5 Choice of Hyperparameters441

In the multi-subject dataset, four coefficients need to be decided for the objective function as indicated above:442

{α, β, σ, γ}. There is a balance between the choice of β and γ: properly choosing the values could separate443

the latent in the unsupervised space and the latents in both unsupervised and background space as well. A444

large separation of the background latent may potentially lead to unsatisfactory reconstruction results. The445

choice of kernel size σ depends on the dataset, and should be larger than the number of distinct groups in446

our dataset; since in our current experiments, we have at most four groups, we set σ = 15. Moreover, we set447

α to 1000, β to 5, γ to 500. We set the dimensionality of the supervised latent space equal to the number of448

tracked video parts, which is 5 in our case. We set the dimensionality of the unsupervised latent space as 2,449

while that of the background latent space as 2.450

In the social behavior task, we track the nose location as the supervised latent, since the other labels do451

not have a high variance (due to the alignment process). Additionally, we do not need any unsupervised452

latents to explain the individual’s behavior. The CS latent in this setting has 3 dimensions. Here, α is 1200,453

γ is 200, and the kernel size is 20.454

The hyperparameters chosen for all three datasets are shown in Tables 2 and 3.455

Table 2: Hyperparameter for different dataset

Dataset α β σ γ

Various contrast 1000 5 5 500
Multi-subject 1000 5 15 500
Social behavior 1200 N/A 20 200

456

Table 3: Latent dimensions and the prior distribution for different dataset

Dataset supervised unsupervised constrained prior distribution

Various contrast 5 2 3 Swiss roll
Multi-subject 5 2 2 circle
Social behavior 2 0 3 hollow cylinder

457

.6 Motif Generation458

A switching linear dynamical system (SLDS) consists of discrete latent state zt ∈ {1, 2, ..K}, continuous459

latent state xt ∈ RM , and the observation state yt ∈ RN . Here, t = 1, 2, 3, .., T is the time step, T is the460

length of the input signal; K is the number of discrete states; M is the number of latent dimensions; N is the461

observation dimensions. The discrete latent state zt follows the Markovian dynamics with the state transition462

matrix expressed as:463

Qi,j = P (zt = j|zt−1 = i) (10)

The continuous latent state xt has the following linear dynamical relations that determined by zt.464

xt+1 = Azt+1
xt + Vzt+1

ut + bzt+1
+ wt (11)

Here, Azt+1
is the dynamic matrix at state zt+1; ut is the input at time t, with Vzt+1

being the control465

matrix; bzt+1
is the offset vector and wt being the noise which is generally the zero mean Gaussian. Here, our466

observation model is in Gaussian case; therefore, the observation yt is expressed as:467

yt = Cztxt + Fztut + dzt + vt (12)

Here, Czt is the measurement matrix at state zt; Fzt is the feedthrough matrix which directly feed the468

input into the observation; dzt is the offset vector and vt is the noise. Here the update was accomplished by469

the Expectation-Maximization(EM) algorithm. In the E-step, the model updates the hyperparameters. In470

the M-step, the log-likelihood in Eq.12 is being maximized.471

To implement the SLDS, we adopted the open source software from Linderman et al.[16]. We fit the472

SLDS using different latent dimensions, where the observation dimension was the order of latent dimension473
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and the number of states was determined by visualizing the videos. We use SLDS’s to model the motifs in474

the multi-subject dataset since the behaviors are well separated using their dynamics. We use K-means to475

model the motifs in the freely-moving social behavior dataset since the behaviors are well separated directly476

in state space. An autoregressive HMM (a simpler model than an SLDS) applied to the CS latents in the477

social behavior dataset leads to similar results as the K-means.478

.7 Loss Curves479

We show the learning curve for each loss term for both dataset to precisely quantify the model, in Fig. 10.480

For the multi-sujbect dataset (Fig. 10A), for the unsupervised latents, the final loss for dimension-wise KL,481

total correlation, and the mutual information are 11.7, −4.8, and −4.6, respectively. The final KL loss for482

the supervised latents is 5.06 and the final CSD loss for the CS latents is 0.1. For the free behaving dataset,483

the loss curves for each loss term are shown in Fig. 10B. By the end of the training process, the KL loss for484

the supervised latents is 7.01 and the CSD loss for the CS latents is 1.15.485

486

Figure 10: Loss curve for A. training the multi-subject dataset B. training the freely behaving dataset with
the specified hyperparameters as in Tables 1 and 2.

.8 SVM487

To further quantify the separation of the latents between different subjects, we applied a supervised classifica-488

tion method to decode the identity of the subject using each latent.489

After randomly shuffling all the latents, we split all the trials into training trials and test trials, with490

each mouse having 368 trials in the training set and 20 trials in the test set, and repeated this 5 times with491

different random seeds.492

.9 Latent traversal493

For the multi-subject dataset, we tested the latent traversal with the same base image to validate the results,494

shown in Figure 11. Here, we randomly chose a frame from a mouse and changed each individual latent495

within different ranges as detailed in the Methods. For example, in Figure 11, the first row contains the496

output when the corresponding latent is changed to take on the maximum value from the range of Mouse 1.497

Similar to the figures in the main text, the upper images are the latent traversal images while the lower ones498

are the difference between the upper and original images. We see that the base image from Mouse 3 can be499
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flexibly changed to produce a different mouse when changing the CS latent. Moreover, when changing the500

supervised and unsupervised latents for the different mice, Mouse 3 seems to be flexibly changing with these501

latents from different mice.502

To better visualize the specialization of each latent, we generated the latent traversal videos for each503

latent with different base images. For different mice, we, first of all, find the maximum and the minimum504

value for the specific latent. Then, change the latent within that range with 0.5 per step. Finally, concatenate505

all the latent traversal images into videos. The videos can be found in Supplementary Material 3.506

We performed a similar visualization on the freely-moving social behavior dataset for the CS latents. The507

latent traversal videos can be found in Supplementary Material 4, and some clips from the videos are shown508

in Fig 12.509

510

Figure 11: Latent traversals for the multi-subject dataset for the four mice with the same base image A. an
example supervised latent, B. an example unsupervised latent, and C. an example CS latent. We see that the
same base image (Mouse 3) is transformed into a different mouse each time when changing the CS latent.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2022.09.01.506091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506091
http://creativecommons.org/licenses/by-nc-nd/4.0/


511

Figure 12: Latent traversals on the CS-latents for the freely-moving social behavior dataset. We see that the
latents all encode for social interactions between the two mice.

.10 Neural decoding models512

The trials were first shuffled and then split into training and testing. Next, we employed the CS-VAE513

generated latent representations, and choose one example subject to decode the behavior at time t using the514

neural activity recorded between t−0.15s and t. We applied four types of models to compare the performance.515

A linear model which directly maps the neural activities into the behavior. A multilayer perceptron (MLP)516

with three dense layers to train the decoder. We used the Adam optimizer with learning rate decay from 0.1517

with 0.3 decay rate for every 5 step. The batch size was fixed to be 150 and trained for 200 epochs. A LSTM518

model, which begin with a dense layer followed by a LSTM layer with a drop-out rate being 0.5 and another519

dense layer at the end. We applied the same training strategy as in MLP model.520

521

Figure 13: Neural decoding for CS-VAE vs. PS-VAE.
We introduced a model based on transfer learning to perform the decoding test on the previously tested522

subject. The rest of the three mice were the input to the original training model. The procedures were523

similar to before, after the trials were shuffled and split, we decoded the behavior directly with the raw neural524

activities with the time window being 0.15s. After that, we implemented three perceptron layers for each of525

the three mice before the output of which went into a recurrent neural network (RNN). The RNN consisted526

of one long short-term memory (LSTM) layer with a unit number of 64 and a drop-out layer with a rate527

being 0.5. We applied the Adam optimizer with learning rate decay from 0.1 with 0.3 decay rate for every 5528

step. The batch size was 150 and we trained for 200 epochs. After we finished training the original network,529

we transferred the RNN model to the new model which was applied to train the fourth mouse alone. For530

the fourth mouse, the trials were split with different training and testing ratios. After applying the same531

steps to the data, the neural activities then went through a new perceptron layer before going through the532

pre-trained RNN model. We applied the Adam optimizer with the same learning rate decay procedures as533

well. We again, trained for 200 epochs with batch size being 128 this time. The trade-off between accuracy534

and time for different models can be found in Tables 4 and 5.535
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Table 4: Training size vs R2 value for multi-subject dataset

Training size Linear model Dense model LSTM model Transfer learning model

67712 0.476± 0.048 0.580± 0.058 0.610± 0.054 0.590± 0.050
58512 0.478± 0.014 0.560± 0.023 0.595± 0.022 0.579± 0.019
49312 0.483± 0.009 0.556± 0.014 0.593± 0.013 0.576± 0.011
40112 0.476± 0.013 0.543± 0.019 0.576± 0.019 0.562± 0.015
30912 0.470± 0.0.011 0.529± 0.015 0.559± 0.018 0.552± 0.013
21712 0.458± 0.010 0.496± 0.016 0.524± 0.017 0.522± 0.013
12512 0.424± 0.012 0.461± 0.0.019 0.480± 0.025 0.485± 0.018
3312 0.269± 0.030 0.321± 0.048 0.325± 0.057 0.345± 0.043

536

Table 5: Training size vs time usage for multi-subject dataset

Training size Linear model Dense model LSTM model Transfer learning model

67712 1.442± 0.282 115.946± 1.559 169.801± 5.961 169.482± 5.041
58512 1.130± 0.212 80.428± 1.586 146.734± 5.063 151.771± 4.162
49312 0.937± 0.194 68.879± 1.257 122.500± 2.283 125.240± 4.479
40112 0.679± 0.114 56.449± 1.119 100.336± 2.212 102.923± 3.391
30912 0.484± 0.079 44.427± 0.808 78.850± 1.771 79.907± 2.608
21712 0.309± 0.050 31.968± 0.574 57.670± 1.681 56.032± 1.549
12512 0.162± 0.008 19.573± 0.369 35.557± 1.050 33.409± 0.741
3312 0.104± 0.034 7.292± 0.092 13.318± 0.342 11.365± 0.336

537

.11 Multidimensional Canonical Correlation Analysis (MCCA) for neural signal538

alignment539

In our work, after extracting similar behaviors chunks from different individuals, we then extracted the540

corresponding neural activity for each subject. To smooth away the discreteness of the neural activity chunks,541

we shuffled the chunks before concatenating them together. After that, we performed the MCCA for all four542

subjects on each brain region. For each brain region, we choose the four sets of neural activities being the same543

length d, X1 = {x11, x12, ..., x1n} ∈ Rn×d, X2 = {x21, x22, ..., x2n} ∈ Rm×d, X3 = {x31, x32, ..., x3n} ∈544

Rk×d, and X1 = {x11, x12, ..., x1n} ∈ Rl×d. Here, we choose the minimum number of region dimensionality545

in all of the four subjects as the dimension of canonical coordinate space, minimum{n,m, k, l}, and is546

annotated as j. For each dimension, define the projection weights for each dataset as aj = {aj1, aj2, .., ajn},547

bj = {bj1, bj2, .., bjn}, cj = {cj1, cj2, .., cjn}, and dj = {dj1, dj2, .., djn}. The resulting projected datasets are548

now d-dimensional arrays: u1j = ⟨aj , X1⟩, u2j = ⟨bj , X2⟩, u3j = ⟨cj , X3⟩, and u4j = ⟨dj , X4⟩. For each of549

the coordinate spaces, the objective functions can be written as:550

ρj =
⟨u1j , u2j , u3j , u4j⟩

∥u1j∥∥u2j∥∥u3j∥∥u4j∥
(13)

Generally, for each pair of canonical components, the above equation is solved iteratively to find the best551

projects that can maximize the correlation. During training, the orthogonality between each canonical552

component is constrained. In our experiment, we calculated the across-subject correlations for each obtained553

CCs and kept the highest correlation value for each pair, here termed ρ1 (Equation 13). We performed the554

above task for each brain region. In addition, we shuffled the chunks ten times and repeated the above steps.555

We also calculated the canonical component for the same subject having similar behaviors. We applied the556

same methods as stated above to find similar behavior components and the corresponding neural activities.557

We divided the obtained neural activities into two parts with the same length and performed the CCA on558

those two signals. We calculated the correlation between the first two canonical correlation axes as the559

baseline.560
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.12 Code561

The code for training the CS-VAE can be found in Supplementary Material 7. The code can be executed562

by simply compiling the script ‘train.py’. All the code are available at: https://github.com/saxenalab-563

neuro/Behaivoral-feature-extraction-CS-VAE.564
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